Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850427

RESUMO

The identification of druggable proteins (DPs) is significant for the development of new drugs, personalized medicine, understanding of disease mechanisms, drug repurposing, and economic benefits. By identifying new druggable targets, researchers can develop new therapies for a range of diseases, leading to better patient outcomes. Identification of DPs by machine learning strategies is more efficient and cost-effective than conventional methods. In this study, a computational predictor, namely Drug-LXGB, is introduced to enhance the identification of DPs. Features are discovered by composition, transition, and distribution (CTD), composition of K-spaced amino acid pair (CKSAAP), pseudo-position-specific scoring matrix (PsePSSM), and a novel descriptor, called multi-block pseudo amino acid composition (MB-PseAAC). The dimensions of CTD, CKSAAP, PsePSSM, and MB-PseAAC are integrated and utilized the sequential forward selection as feature selection algorithm. The best characteristics are provided by random forest, extreme gradient boosting, and light eXtreme gradient boosting (LXGB). The predictive analysis of these learning methods is measured via 10-fold cross-validation. The LXGB-based model secures the highest results than other existing predictors. Our novel protocol will perform an active role in designing novel drugs and would be fruitful to explore the potential target. This study will help better to capture a more universal view of a potential target.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-9, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608578

RESUMO

piwiRNA is a kind of non-coding RNA (ncRNA) that cannot be translated into proteins. It helps in understanding the study of gametes generation and regulation of gene expression over both transcriptional and post-transcriptional levels. piwiRNA has the function of instructing deadenylation, animal fertility, silencing transposons, fighting viruses, and regulating endogenous genes. Due to the great significance of piwiRNA, prediction of piwiRNA is essential for crucial cellular functions. Several predictors were established for prediction of piwiRNA. However, improving the prediction of piwiRNA is highly desirable. In the current study, we developed a more promising predictor named, BLP-piwiRNA. The features are explored by reverse complement k-mer, gapped-k-mer composition, and k-mer composition. The feature set of all descriptors is fused and the best features are selected by cascade and relief feature selection strategies. The best feature sets are provided to random forest (RF), deep neural network (DNN), and support vector machine (SVM). The models validation are examined by 10-fold test. DNN with optimal features of Cascade feature selection approach secured the highest prediction results. The results illustrate that BLP-piwiRNA effectively outperforms the existing studies. The proposed approach would be beneficial for both research community and drug development industry. BLP-piwiRNA would serve as novel biomarkers and therapeutic targets for tumor diagnostics and treatment.Communicated by Ramaswamy H. Sarma.

3.
Int J Biol Macromol ; 243: 125296, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301349

RESUMO

Angiogenic proteins (AGPs) play a primary role in the formation of new blood vessels from pre-existing ones. AGPs have diverse applications in cancer, including serving as biomarkers, guiding anti-angiogenic therapies, and aiding in tumor imaging. Understanding the role of AGPs in cardiovascular and neurodegenerative diseases is vital for developing new diagnostic tools and therapeutic approaches. Considering the significance of AGPs, in this research, we first time established a computational model using deep learning for identifying AGPs. First, we constructed a sequence-based dataset. Second, we explored features by designing a novel feature encoder, called position-specific scoring matrix-decomposition-discrete cosine transform (PSSM-DC-DCT) and existing descriptors including Dipeptide Deviation from Expected Mean (DDE) and bigram-position-specific scoring matrix (Bi-PSSM). Third, each feature set is fed into two-dimensional convolutional neural network (2D-CNN) and machine learning classifiers. Finally, the performance of each learning model is validated by 10-fold cross-validation (CV). The experimental results demonstrate that 2D-CNN with proposed novel feature descriptor achieved the highest success rate on both training and testing datasets. In addition to being an accurate predictor for identification of angiogenic proteins, our proposed method (Deep-AGP) might be fruitful in understanding cancer, cardiovascular, and neurodegenerative diseases, development of their novel therapeutic methods and drug designing.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Matrizes de Pontuação de Posição Específica
4.
Sci Rep ; 12(1): 20672, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450775

RESUMO

Living organisms including fishes, microbes, and animals can live in extremely cold weather. To stay alive in cold environments, these species generate antifreeze proteins (AFPs), also referred to as ice-binding proteins. Moreover, AFPs are extensively utilized in many important fields including medical, agricultural, industrial, and biotechnological. Several predictors were constructed to identify AFPs. However, due to the sequence and structural heterogeneity of AFPs, correct identification is still a challenging task. It is highly desirable to develop a more promising predictor. In this research, a novel computational method, named AFP-LXGB has been proposed for prediction of AFPs more precisely. The information is explored by Dipeptide Composition (DPC), Grouped Amino Acid Composition (GAAC), Position Specific Scoring Matrix-Segmentation-Autocorrelation Transformation (Sg-PSSM-ACT), and Pseudo Position Specific Scoring Matrix Tri-Slicing (PseTS-PSSM). Keeping the benefits of ensemble learning, these feature sets are concatenated into different combinations. The best feature set is selected by Extremely Randomized Tree-Recursive Feature Elimination (ERT-RFE). The models are trained by Light eXtreme Gradient Boosting (LXGB), Random Forest (RF), and Extremely Randomized Tree (ERT). Among classifiers, LXGB has obtained the best prediction results. The novel method (AFP-LXGB) improved the accuracies by 3.70% and 4.09% than the best methods. These results verified that AFP-LXGB can predict AFPs more accurately and can participate in a significant role in medical, agricultural, industrial, and biotechnological fields.


Assuntos
Proteínas Anticongelantes , alfa-Fetoproteínas , Animais , Aprendizado de Máquina , Matrizes de Pontuação de Posição Específica , Agricultura
5.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366205

RESUMO

Wireless sensor networks (WSNs) have been developed recently to support several applications, including environmental monitoring, traffic control, smart battlefield, home automation, etc. WSNs include numerous sensors that can be dispersed around a specific node to achieve the computing process. In WSNs, routing becomes a very significant task that should be managed prudently. The main purpose of a routing algorithm is to send data between sensor nodes (SNs) and base stations (BS) to accomplish communication. A good routing protocol should be adaptive and scalable to the variations in network topologies. Therefore, a scalable protocol has to execute well when the workload increases or the network grows larger. Many complexities in routing involve security, energy consumption, scalability, connectivity, node deployment, and coverage. This article introduces a wavelet mutation with Aquila optimization-based routing (WMAO-EAR) protocol for wireless communication. The presented WMAO-EAR technique aims to accomplish an energy-aware routing process in WSNs. To do this, the WMAO-EAR technique initially derives the WMAO algorithm for the integration of wavelet mutation with the Aquila optimization (AO) algorithm. A fitness function is derived using distinct constraints, such as delay, energy, distance, and security. By setting a mutation probability P, every individual next to the exploitation and exploration phase process has the probability of mutation using the wavelet mutation process. For demonstrating the enhanced performance of the WMAO-EAR technique, a comprehensive simulation analysis is made. The experimental outcomes establish the betterment of the WMAO-EAR method over other recent approaches.

6.
Comput Intell Neurosci ; 2022: 2987407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211019

RESUMO

DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. This research designed a novel predictor to identify DBPs more accurately. The features from the sequences are transformed by F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. The results reveal the excellent performance of our novel predictor over the past studies. DBP-iDWT would be fruitful for establishing more operative therapeutic strategies for fatal disease treatment.


Assuntos
Proteínas de Ligação a DNA , Análise de Ondaletas , Algoritmos , Antibacterianos , Biologia Computacional/métodos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...